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Optimal 3-Dimensional Minimum 

Time Turns for an Aircraft 

by 
2 

Robert Po Humphreys 

George R. Hennig-' 

William A. Bolding^ 
h 

Larry A. Helgeson 

Abstracto Using a 3-dimensional formulation for an aircraft's 

dynamics, the required controls for a minimum time-to-turn are 

calculated. Three controls are usedi (1) angle of attack, (2) 

bank angle, and (3) thrust. The minimum time-to-turn solutions 

are subject to varying terminal conditions on both flight path 

angle and hea^xng angle. 

In general, the times for the turns are not greatly 

changed by varying thrust/weight ratios or the final flight 

path angle. Significant effects on the change in total energy, 

final altitude, final velocity and control histories are noted 
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Seiler Research Laboratory sponsorship in cooperation with 
the USAF Academy and Air Command & Staff College. 

2Major USAF, Air Command &  Staff College (AU), Maxwell AFB, Ala. 
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^Cadet 1st Class, USAF Academy, Colo. 
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for variations of the above parameters« 

Solutions to the above problem are accomplished through 

the use of Miele's Sequential Gradient-Restoration Algorithm. 

1, Introduction 

In the past few years, optimization techniques have been 

used to determine turning performance of high speed aircraft. 

Refs. 1-3 discuss minimum-fuel and minimum-time turns at con- 

stant altitude. Bryson and Hedrick (Refs. *J~5) have extended 

the analysis of these types of turns to three dimensions by 

using the energy-state approximation. The energy-state 

approximation was also used by Beebee (Ref. 6) to determine 

three-dimensional, mini mum-time turns for p ^ypersonic rocket 

powered aircraft. Kelly and Edelbaum (Ref. ?) suggested the 

use of asymptotic expansions in conduction with energy-climbs 

and energy-turns. 

Energy approximations are very helpful in studying optimal 

aircraft flight since the order of the state differential system 

is reduced. In the case of minimum-time-to-climb, Bryson, Desai, & 

Hoffman (Ref.8) have shown that energy-approximations give good 



ll 

results when compared to the more complex dynamic models. Yet, 

there is a need to check the accuracy of these approximations 

when used to determine three-dimensional turning performance. 

Preyss, Willes, Humphreys, and Roberts (Ref. 9) applied 

the Pontryagin Minimum Principle to the problem. This approach 

to minimum time turns results in the usual two-point boundary 

value problem with its inherent solution difficulties. The 

approach used in this paper is based on the Sequential Gradient- 

Restoration Algorithm developed by Miele , Pritchard and 

Damoulakis in Reference 10, 

2. List of Symbols 

x1 non-dimensional distance (x-direction) 

x2 non-dimensional distance (y-direction) 

x-, non-dimensional distance (z-direction) 

XL non-dimensional speed 

x, flight-path angle (y) 

Xg heading angle 

u1 pseudo angle-of-attack controller 

u2 bank angle controller 

u- pseudo thrust controller 

L non-dimensional lift 

D non-dimensional drag 



a non-dimensional density function 

Y^ normalized profile drag coefficient 

k2 normalized induced drag coefficient 

k- air density height coefficient 

W normalized weight 

T normalized thrust 

o normalized angle-of-attack 

A; adjoint associated with state x. 

e independent time variable 

t       independent time variable for fixed end time 
formulation 

xi     dxL 

L       3L_ 
Ul      dv^ 

xi     dxi 

D       3D ul    eu7 

n       normalized load limit 

v       corner velocity c 

3. Formulation of thf Problem 

The objective of  Is paper is to determine the optimal 

control required for an aircraft to make a minimum time-to-turn 

in three dimensions. In optimal control notation, one desires 

to find uii« minimum of the cost functional 

1= ef (1) 



subject to the differential constraints 

g= </>(x,u,e) (2) de 

and subject to the boundary conditions 

x(0) - xft = 0 
(3) 

#(x,e)  = 0 
ef 

where the state variable x is an n-vector, the control variable 

u is an ro-vector, e is the independent time variable, ef is 

the final time and ^ is a q-vector function defining the 

terminal boundary. 

3.1 Equivalent Fixed Final Time Problem The Sequential 

Gradient-Restoration Algorithm was formulated for the final 

time fixed. This transformation is always possible through the 

use of a parameter (see Ref. 10). In this problem, if the 

time e is redefined by the transformation 

e =Tt (k) 

where T=e», then equations 1-3 may be written as^ 

I=T (5) 

^Differentiation by the independent variable t is denoted by 
a dot (.). 



* =<p(x,U,T,t) (6) 

x(0) - x0 = 0 (?) 

»MX,T)1 = 0 (8) 

3.2 Aircraft Equations of Motion If one assumes (a) that the 

aircraft flies a coordinated turn, (b) that negligible fuel is 

consumed during the maneuver, and (c) that the error due to the 

thrust vector rot being col5r*ear with the velocity vector is 

negligible, then the equations of motion in the velocity axis 

coordinate system are 

jL = Tx^cos(xt) cos(x6) 

x2 = rxlfcos(x^)sin(x^) 

x~ = -Tx^sin(x5) 

jtk  = r(T-D-Wsin(x5)) 

jt- =   TdcosUgJ-WcosU^J/x^ 

(9) 

*g = rLsin(u2)/(x^cos(xc)) ■ 

The initial conditions of the state variable x are assumed 

i 

given. The vector function ty  for the problem to be studied 

is given by 

i  



#(X,T) = 
x5(l) - xf_ 

x,(l) - 
= 0 (10) 

'6Vi/ " *f6 J= 

where  Lht components ^ through X|f are free at the final time. 
j 

The equations defining L,D,' and a are 

.2   . L = tt<rx, 

D = (kj+k/jffx^ 
(11) 

a = ek3x3' 

3.3 Control Constraints In order to obtain realistic results, 

it is necessary to keep the angle-of-attack, the thrust, and 

the "g" loading coi^strained within specified limits. These 

constraints are specified in this problem by 

0 * a £ l 

0i£ apx^  6 1 

0 ^ T £ T 
(12) 

max 

All three of these constraints result in control variable 

i        i 
1 inequality constraints and may be handled by a simple sub- 

i 

stitution transformation. For equation 12(c) the transformat ion 

is 

V Tmax8in <V (13) 

«IfllMMJIII 



Equations 12(a) and 12(b) both result in a constraint on the 

angle-of-attack . These two constraints can be seen pictorially 

in Figure 1« 

a 
z a  = 1 

■a  = l/(<rxj) 

Figure 10 Angle-of-Attack vs Velocity Constraint 

For velocities below the corner velocity,<r , the transformation 

a  ss sin (u^) m) 
is used, and for velocities above the corner velocity the 

transformation 

L = sin (uj) (15) 

is used. The same control u, is used for both inequality 

conditions, equations 12(a) and 12(b), since these two conditions 

do not hold simultaneously0 

8 
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4. Solution Procedure 

The solution procedure consists of alternate applications 

of a gradient phase and restoration phases* In the gradient 

phase, nominal functions for x(t), u(t), and r which satisfy 

the differential constraints and boundary conditions are assumed. 

By minimizing the first-order change to the performance index, 

variations 4x(t), 4u(t), and AT  are determined. These var- 

iations are added to the nominal functions to obtain varied 

functions x(t), u(t), and T which produce a decrease in the 

performance index. Since the constraints are satisfied only to 

first order in this phase, the varied functions normally do not 

satisfy the non-linear differential equations or the boundary 

conditions. Consequently, a restoration 7*hase is used to change 

x(t), u(t), and T   SO that the non-linear differential equations 

and boundary conditions are satisfied. 

To begin the restoration phase, the varied functions x(t), 

u(t), and T are treated as nominal functions. By minimizing 

the least-square change of u(t) and r   subject to the quasi- 

linearized differential equations and quasilinearized boundary 

mmm^mmmim~m~m-mm 



conditions, a new set of variations &x{t)t L\&\)t and Ar    is 

obtained« These variations are added to the nominal functions 

x(t), u(t), and T to obtain new varied functions x(t), ju(t), 

and f , T.iis  step is performed iteratively until the differ- 

ential equations and boundary conditions are restored to some 

preselected degree of accuracy. The cumulative errors in the 

constraints and optimum conditions are evaluated using the 

.6 

P = j  N(x -<p)dt + N(^) (16) 

functionals 

= / Nl 

°1 1 
Q =f NÜC + <Px\)dt    +[  N(fu-<^uX)dt 

+ N(AfT-<«r)dt+(l+^ü)1) + N(X+^ci»)1  (17) 

Thus P must be reduced to an acceptably small value in oach 

cycle of the Sequential Gradient-Restoration Algorithm. When 

both P and Q are acceptably small values, convergence has been 

obtained. 

6 T 
The norm of a vector z is defined to be N(z) = z z. 

10 



Initially« nominal solutions which satisfy all the con- 

straint conditions, equations 6-8, are not normally known. 

However, this presents no problem, since only the restoration 

phase need be applied to soire initial guess. In this way. 

feasible nominal solutions can be generated and the Sequential 

Gradient-Restoraticn Algorithm can be used to seek the 

optimal solution. 

5. Necessary Conditions 

As in other approaches to optimizaion problems, this method 

also has necessary conditions which must be satisfied. Both 

the gradient phase and the restoration phase have a set of 

necessary conditions which result from application of opti- 

mization criteria such as the Euler equations and transversality 

conditions. However, the particular form of these conditions 

is a consequence of the numerical technique to be used. A 

11 
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detailed development of the results presented in the next few 

paragraphs can be found in Refs. 10 - 11. The necessary 

conditions are as followsi 

5.1 Gradient Phajy 

• m ip fit 
A = <p*A + <iTB + </£C (18) 

* = " *x* (19) 

B■ - - <PUA 

• "A Adt - 1 

(20) 

(21) 

where A=4x/a, B=4u/a. C=4r/a, and a is the step size for the 

gradient phase» Equation (18) is a first-order approximation 

of the differential constraints and equations (19) - (?1) are 

the necessary conditions. The boundary conditions are 

A(0) = 0 (22) 

(#£A * v*c)x = 0 (23) 

12 



The equivalence to the transversality condition is 

(X4^Xü)1 = 0 (2k) 

5.2 Restoration Phase 

A = <p^k + (ph + (p^C -  (<P- *) 

X = -v 

B = 

C = 

-v 
-f </&dt 
•'O   T 

(25) 

(26) 

(27) 

(28) 

where A=4x/bt B=4u/b, C=4T/bt and b is the stepsize for the 

restoration phase. Equation (25) is a quasilinear approximation 

of the differential constraints and equations (26) - (28) are 

the necessary conditions. The boundary conditions are 

A(0) = 0 

(# + #£A + ^C)1 = 0 

(29) 

(30) 

The equivalence to fie transversality condition is 

(A + 1? u),   = 0 x x   1 (3D 

13 
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The matrices <pz, <p^9  and <p   are given by the same expression in 

T both the gradient and restoration phases« For the matrix <PX, 

all the elements (piiij)  are zero except for the followingi 

(1.4) = Tcos(x*)cos(xg) 

(1.5) = -TX^sin(x5)cos(x6) 

(1.6) = -TX^cos(x,)sin(xg) 

(2.4) =    cos(x,)sin(x^) 

(2.5) = -TX|jSin(Xe)sin(xg) 

(2.6) = TXjjCOS(Xc)cOs(Xg) 

(3.4) = -rsin(x5) 

(3.5) - -TX^COS(X5) 

(4.3) = -TD 
3 

(4.4) = -TDY x4 
(4.5) = -TWcos(x5) (32) 

(5.3) - TLx cos(u2)/x^ 

2 
(5.4) = -T(LCOS(U2)-WCOS(XJ)/X^ + TLX cos(u2)/x^ 

(5.5) = rWsin(x5)/x^ 

(6.3) = TLX sin(u2)/x^cos(x5) 

2 

(6.4) = -TLsin(u2)/xifcos(Xr) + TLX sin(u2)/x^cos(x5) 

o 
(6t5) = TLsin(u2)sin(x^)/x^cos (x^) 

T 
For the matrix <?„■ all the elements are zero except for the 
following! u 

(4,1) = -TD, u. 

(4,3) = 2TTmaxsin(u3)cos(u3) 

14 
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(5tD - TCOS(U2)L /xk 

(5,2) = -TLsin(u2)/x4 (33) 

(6.1) = Tsin(u2)L /x^cosU^) 

(6.2) = TLC0S(V )/x^CO£(Xe) 

For the matrix^, the elements arei 

(1,1) = x^co8(x^)cos(x6) 

(2,1) = x^cos(x^)sin(x6) 

(3,1) = -xlfsin(x5) 

(4,1) *  T-D-Wsin(x5) 

(5,1) = (Lcos(u2)-Wcos(x5))/x^ 

(6,1) = Lsin(u2)/(x^cos(x5)) 

where, for x^ -o~*% 

(3*) 

Lx, * k3L 5 Lxu = 2L/X* ' X = k3D ' X = 2D/X^ 

2 . Lu = k2 xJsin(2Ul) >,     DUi = 2k2LLUi/ x^ (35) 
ul 

and for Xi, -<* , 

2    '2 
L  = 0 ! L  = 0 i D  = kJk. x,-k2L / j^) x~ .     x^      x3   J    

x    H 

D  = 2(14 xJ-k2L
2/ x*)/x^ « L  = sin(2Ul) 

Du1 
= 2k2LLu/ X£ 

(36) 

15 



6, Numerical Results 

The numerical results presented are for an airplane with 

the following nominal characteristics! 

W = 12,150 lbs. 

»max = 7'22 

S = 2?7 sq.ft. 

kt = 0.02 

k«, = 0.05 

= 1.0 
max 

The aircraft was assumed to be flying straight and horizontal 

immediately before entering the turn. Thus, the flight path 

angle and heading angle were given initial values of zero. 

The position coordinates x* and x2 were assigned values of zero 

7 
and the altitude was specified as 13.390 ft • 

In order to obtain information on a variety of turning 

situations, the thrust/weight ratio, initial velocity, final 

heading, and final flight path angle were all varied as shown 

in Table 1. Emphasis was placed on a thrust/weight ratio of 

one since advanced aircraft are expected to have thrust/weight 

ratios in this range. The initial velocivy was varied to give 

values approximately 130 fps above and below the corner velocity 

'Note that in the system of equations, altitude is negative 
upward. Therefore, the initial altitude in the computer 
simulation was equivalent to -13»390 ft. 

16 



Data Set T/ W Xk(0) *6( T)            X^ (r) 

1 0.38 621 180                0 

2 0.50 

3 0.75 
k 1.00 

5 1.25 
6 1.50 '' \<                                  M 

7 0.38 903 180                 0 

8 0.50 

9 0.75 
10 1.00 

11 1.25 

12 1.50 > r ♦                          -if 

13 1.00 621 180 30 

14 1 L5 

15 0 

16 -] 15 

17 * t Jf * ' 30 

18 1.00 903 180 30 

19 : L5 
20 0 

21 * 
L5 

22 > ' V < t 30 

23 LOG 621 90 30 

Zk * 
15 

25 0 

26 15 

27 < ' > ' > 30 

28 1.00 903 90 30 

29 
4 

L5 
30 0 

31 15 
32 ' f > ' > f 30 

Table 1. Computer Schedule 

17 
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at the Initial altitude* An envelope of 60° for the final 

flight path angle was obtained by varying this final condition 

from -30° to +30°. 

In addition to the variables mentioned in the problem 

formulation, two others whish are important in combat maneuvers 

were evaluated in the numerical process* The change in 

specific energy was calculated using 

dhe =he(r) - he(0) (3?) 

where h =-x~+XjV2g. Also, a turning radius for the l3o° turns 

was calculated using 

r= i[(x1(r).x1(0))
2+(x2(r)-x2(0))

2+(x3(r).x3(0))
2]^ (38) 

6.1 Effect of Thrust/Weight Ratio To determine the effect of 

the thrust/weight ratio, the final flight path angle and final 

heading angle were given values of 0° and 180° respectively. 

Two cases were considered! (1) initial velocity below the 

corner velocity and (2) initial velocity above the corner 

velocityr In both cases, the thrust/weight ratio was varied 

from O.38 to 1*5« These two cases are represented by data sets 

1 through 12 in Table 1. The corresponding values for the 

18 
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Data 
Set Altf(ft) Velf(fts) e-(sec) he(ft) r'ft) 

1 9.982 757 10.7 -496 2356 

2 10,452 775 10k8 394 2397 

3 11.856 796 10.9 2310 2464 

4 13.099 828 11.0 4359 2543 

5 14,470 859 11.1 6529 2562 

6 12,300 794 10.5 2720 2445 

7 15,460 784 11.4 -1029 3053 
8 16,212 801 11.5 139 3125 

9 15.871 809 11.1 -3 2890 

10 16,158 828 11.1 769 2853 
11 16,856 855 11.1 2577 3058 

12 17,634 886 11.2 3798 2883 

13 14,499 768 11.1 4275 2612 

14 14,146 782 11.0 4273 2562 

15 13,099 828 11.0 4359 2542 

16 8,829 791 9.5 -780 2296 

17 9.041 805 8.5 -295 2211 

18 18,970 773 9.9 2196 3003 

19 18,940 788 10.9 2534 3034 

20 17,250 855 11.1 2577 2853 
21 13,303 811 10.9 -2515 2779 

22 6,510 1035 10.2 -2910 3495 

23 14,491 695 6.4 2603 

24 13.792 719 6.0 2434 

25 13.119 741 5.7 ' 2275 

26 12,571 759 5.5 2144 

27 12,107 776 5.3 2063 

28 15,451 945 6.5 3264 

29 14,588 973 6.5 3274 

30 13,600 1006 6.4 3280 

31 12,519 1040 6.3 3277 
32 11,462 1072 6.2 3264 

Table 2. Computer Results 

1Q 
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change in specific energy, turn radius, and the final values 

for altitude, velocity and time are given in Table 2, Ass can 

be seen from Table 2, the thrust/weight ratio has little 

effect upon the time to turn. However, it does affect final 

velocity, final altitude, chang- in specific energy, 'and turn 

radius* 

When entering the turn with velocity less than the corner 

velocity (data sets 1 - 6), an increase in thrust/weight ratio 

produces an increase in final altitude, final velocity, and 

specific energy. However, the results for a thrust/weight ratio, 

i 

of 1.5 are not consistent with these general trends. This 

variation from the trend is a result of throttling. Until the 

thrust/weight ratio reaches 1.5» turns are made a T=T  . For max 

a thrust/weight ratio of 1.5» sufficient acceleration exists 

for the aircraft to fly to the corner velocity, reduce the 

thrust to zero to remain at the corner velocity, and finally 
t ' r 

re-apply full thrust to accelerate on the n   boundary to 

complete the maneuver. The thrust programs for this caue are 

shown in Figure 2, ' 

20 ! 
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When entering the turn at a velocity greater than the 

corner velocity (data sets 7 - 12), an increase in thrust/ 

t 

weight ratio produces an increase in final altitude, final 
s . 

i • 

velocity and, in most instances, specific energy. The vari- 

1 ; 

ations from this trend are also caused by throttling.' As shown 

in Figure 3» throttling occars when the the thrust/weight ratio 
;  -    i ' 

1 

is 0.75 or greater.: 

In the1two cases considered, the aircraft must he flown 
i   i 

I  along the stall and/or the n   bound?ry. Velocity changes» 
in 3.x i. 

i 

are made in the early part of the turn to drive the aircraft 

velocity toward the corner velocity. If the turn is entered 
i 

i 

at a velocity less than v , the aircraft is flown along the 

stall boundary until the corner is reached. The remainder of 

the turn is made on the n ' • boundary. When entering a turn 
,. IUGLX 

i 

at velocity greater than v , the aircraft is flown along the 

n:  boundary until the corner velocity is reached. The 
max   i i 

aircraft remains on or about the corner velocity for a short 

time and then completes the maneuver by accelerating 

on the n   boundary. In every case, 'maximum throttle is 
i        iTiiax 

21 
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applied prior to reaching the corner velocity. As the thrust/ 

weight ratio increases, the maximum throttle is initiated when 

closer to the corner velocity. Whenever throttling occurs» the 

aircraft can remain at the corner velocity for a longer period, 

and consequently, the time to turn is reduced. 

The necessary bank angles for these two cases are shown in 

Figures 4 and 5» As can be seen from these figures, minimum 

time turns have a given bank angle to start the turn and a 

continuously varying bank angle throughout the turn. Also,the 

bank angle is not zero at the end of the turn.  Since 

bank angle is a control variable, it can, by assumption, 

attain ai.y value instantly * 

6,2 Effect of Final Flight Path Angle To determine the effect 

of the  final flight path ai.^le, the thrust/weight ratio was 

given a value of 1.0. Both 180° and 90° turns with entry speeds 

above and below v were considered. These cases are represented c 

by data sets 13 - 32 in Tables 1 and 2. 

6.2.1 180° Turns As shown in Table 2 (data sets 13 - 22), the 

final flight path angle generally has little effect upon the 

22 

  



time to turn 180°. However, final altitude, final velocity, 

turn radius, and change in specific energy are strongly affected. 

When entering the turn with a velocity less than v , throttling 

occurs for the negative final flight path angles (Figure 6). 

In all cases, however, the turn is started at T=T  . When max 

entering the turn with velocity greater than v , throttling 

also occurs. In this case, the turn is started with T=0 and 

power is added after a period of time (Figure 7). 

Specifying the final flight path angle has a definite 

effect upon the type of maneuver required. For example, if the 

aircraft is flying at a velocity less than v , and the final 

flight path angle is required to be positive, the aircraft will 

start into a turning dive to gain velocity and end in a climbing 

turn« An opposite maneuver is required when entering the turn 

at a velocity greater than v and when a negative final flight 

path angle is specified. This would require a climbing turn 

through the first part of the turn and a turning dive at the 

end. The bank angles required for these maneuvers are shown in 

Figures 8 and 9» 

23 



6.2.2 90° Turns For 90° turns, the time to turn decreases as 

the final flight path angle decreases. This trend holds true 

for initial velocities above and below the corner velocity 

(data sets 23-32), As the final flight path angle decreases, 

the aircraft takes advantage of the acceleration of gravity. 

Thus, in the shorter duration turns, load factor is more 

important than aircraft velocity. There is no exchange of 

altitude for velocity to achieve an aircraft velocity near v • 

Instead, the aircraft is flown on the n  boundary with the max 

bank angles shown in Figures 10 and 11. 

6.3 Comment on the Sensitivity of Control Variables Analysis 

of the results of the digital simulation shows that changes in 

the control variables may have relatively little effect on the 

minimum time to turn. Although these characteristics are 

desirable for a pilot performing such maneuvers, they provide 

minor numerical difficulties in obtaining a solution. 

The computer simulations show  that the minimum time to 

turn is not very sensitive to the bank angle control. Relatively 

large changes in the bank angle program (on the order of several 

2k 



degrees between itterations) caused virtually no change in the 

time   turn* Precise control of the aircraft in hank angle« 

therefore, is not required to achieve good results. 

The throttling of the thrust is shown as a time varying 

function over rather short time periods (on the order of a few 

seconds)* As the thrust/weight ratio gets large (greater than 

or equal to one), the thrust program approaches a bang-bang 

solution. For intermediate values of thrust/weight ratio (like 

0.75)t the thrust must be applied well before the corner velo- 

city is attained due to the lag from relatively low acceleration. 

Higher thrust/weight ratios, therefore, provide for more easily 

applied thrust programs which is true  of bang-bang solutions. 

As shown earlier, the angle-of-attack is always limited by 

the maximum load limit or stall angle-of-attack. These two 

boundaries are natural ones to a pilot and it is not difficult 

for a pilot to fly along these boundaries. 

6.^ Comments on the Algorithm A characteristic of the numerical 

algorithm is the   ease with which to choose the initial 

nominal trajectory.  For the examples used 
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in this paper« three constant values of the control are assumed 

and used to numerically integrate the non-linear equations of 

motion. After the initial restoration vas completed, each inter- 

mediate sub-optimal solution always met all the constraints on 

the problem. Therefore, all solutions are feasible and can be 

compared directly. 

Because of the insensitivity of the optimal solution to the 

-4 controls, a very strict convergence criterion of Q^IO  was not 

-2 
used. Solutions for which Q^IO  displayed very small changes 

in the cost functional I=T. 

As a final check on the correctness of the optimal solution, 

the control histories derived by the Sequential Gradient-Restor- 

ation Algorithm were used to numerically integrate the non-linear 

differential equations. In every case, the solutions obtained 

from this final integration process matched the optimum solution 

derived from the Sequential Gradient-Restoration Algorithm, 

?. Summary 

A method which utilizes the generalized equations of motion 

to determine three-dimensional minimum-time turns for aircraft 
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has been presented» The problem was formulated for specified 

final heading and flight path a^glec. The cnalysis was restricted 

to subsonic flight only by the expression used for drag. The 

solution procedure and computational procedure were based upon 

the methods developed in Reference 10 . 

The system of equations for the problem were programmed in 

ALGOL for the Burroughs 5500 computer. The computer simulation 

was used to obtain information on a variety of turning situationso 

Initial velocity, thrust/weight ratio, final heading, and final 

flight path angle were found to have a strong influence on the 

required maneuver. Minimum time turns are always made on the 

stall and/or n   boundaries. During the turn, throttling from '        max 

T=T   to T=0 or the reverse is frequently required for thrust/ 
max 

weight ratios - 0.75. For low thrust/weight ratios an altitude- 

velocity exchange is used to approach the corner velocity. 
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Figure 5. Bank Angle for Various T/W 
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